Развитие и обобщение теории капиллярности ГиббсаМатериалы по медицине / История изучения капиллярных и поверхностных сил / Развитие и обобщение теории капиллярности ГиббсаСтраница 1
Метод слоя конечной толщины
Первоначально метод слоя конечной толщины, основанный трудами Ван-дер-Ваальса [20], Баккера [21], Версхаффельта [22] и Гуггенгейма [16], развивался как независимый метод термодинамики поверхностных явлений. Позднее было обращено внимание на то, что при строгой формулировке этого метода требуется привлечение понятия разделяющей поверхности, но при этом используется не одна, а две разделяющих поверхности [23]. Еще большая связь с методом Гиббса проявляется при построении термодинамики искривленных поверхностей методом слоя конечной толщины [24, 25], где, как и в методе Гиббса, используется понятие поверхности натяжения.
Рассмотрим равновесную двухфазную систему a – b плоской поверхностью разрыва, состояние которой характеризуется уравнением
dU = TdS – PdV + sdA + (29)
и введем разделяющую поверхность со стороны фазы a, а также другую разделяющую поверхность со стороны фазы b на произвольном расстоянии t друг от друга. Представим, что части системы, разделенные слоем толщины t, заполнены объемными фазами a, b и их состояние описывается уравнениями:
dU a = TdS a – PdV a + sdA + (30)
dU b = TdS b – PdV b + sdA + (31)
Если мы теперь вычтем (11) и (12) из (10), то получим уравнение
(32)
в котором каждая экстенсивная величина, помеченная чертой сверху, относится к объему Vs=At и представляет собой сумму реальной величины для данного объема и избытков со стороны обеих фаз. Например
(33)
где
— реальное количество i-го компонента в слое толщиной t;
Г— абсолютная адсорбция i-го компонента со стороны фазы a, отнесенная к разделяющей поверхности со стороны той же фазы;
Г— аналогичная величина адсорбции со стороны фазы b.
Очевидно, форма уравнения (32) не зависит от положения разделяющих поверхностей и величины t. При tуравнение (32) переходит в фундаментальное уравнение Гиббса (25) при t
уравнение (32) переходит в уравнение (29) для двухфазной системы в целом.
Весь термодинамический аппарат строится на совместном рассмотрении уравнений (30) – (32) и вытекающих из них соотношений. В пределе t, и отсюда получается вся теория капиллярности Гиббса, а при t
—другой предельный вариант термодинамики поверхностных явлений (этот вариант был недавно рассмотрен Гудричем [26, стр. 1—37] ), в котором вообще не используется представление о разделяющей поверхности. Таким образом, мы можем сказать, что метод слоя конечной толщины является обобщением метода Гиббса и наиболее общим методом рассмотрения термодинамики поверхностных явлений.
Уравнение адсорбции Гиббса
Наиболее известным результатом теории капиллярности Гиббса является уравнение адсорбции
(34)
где
— избыточная энтропия на единицу поверхности;
Гi — абсолютная адсорбция i-ãî компонента.
Это уравнение было получено Гиббсом только для жидких поверхностей. Оно относится к поверхности натяжения и справедливо как для плоских, так и для искривленных поверхностей.
В течение минувшего столетия уравнение адсорбции Гиббса многократно обобщалось и каждая его новая форма была вехой в развитии термодинамики поверхностных явлений, а также этапом лучшего понимания самой теории Гиббса. Последнее несомненно при рассмотрении обобщенной формы уравнения адсорбции Гиббса для произвольного положения сферической разделяющей поверхности [18, 27, 28]:
(35)
Смотрите также
Поддержание и восстановление внутримозгового гомеостаза
Прежде чем активно влиять на
внутричерепной гомеостаз, необходимо исключить органическое повреждение мозга
для того, чтобы вовремя провести оперативное вмешательство по поводу
внутримозговых гемато ...
Терминальный илеит (Болезнь крона)
...
Гонорея.
Гонорея
относится к классическим заболеваниям, передающимся половым путем (венерическим
болезням). Возбудитель – гонококк (Neisseria gonorrhoeae). При этом заболевании
возможно поражение мочеиспуск ...